Name |
TCP Connect Scan |
|
Likelyhood of attack |
Typical severity |
Low |
Low |
|
Summary |
An adversary uses full TCP connection attempts to determine if a port is open on the target system. The scanning process involves completing a 'three-way handshake' with a remote port, and reports the port as closed if the full handshake cannot be established. An advantage of TCP connect scanning is that it works against any TCP/IP stack. RFC 793 defines how TCP connections are established and torn down. TCP connect scanning commonly involves establishing a full connection, and then subsequently tearing it down, and therefore involves sending a significant number of packets to each port that is scanned. Compared to other types of scans, a TCP Connect scan is slow and methodical. This type of scanning causes considerable noise in system logs and can be spotted by IDS/IPS systems. TCP Connect scanning can detect when a port is open by completing the three-way handshake, but it cannot distinguish a port that is unfiltered with no service running on it from a port that is filtered by a firewall but contains an active service. Due to the significant volume of packets exchanged per port, TCP connect scanning can become very time consuming (performing a full TCP connect scan against a host can take multiple days). Generally, it is not used as a method for performing a comprehensive port scan, but is reserved for checking a short list of common ports. |
Prerequisites |
The adversary requires logical access to the target network. The TCP connect Scan requires the ability to connect to an available port and complete a 'three-way-handshake' This scanning technique does not require any special privileges in order to perform. This type of scan works against all TCP/IP stack implementations. |
Execution Flow |
Step |
Phase |
Description |
Techniques |
1 |
Experiment |
An adversary attempts to initialize a TCP connection with with the target port. |
|
2 |
Experiment |
An adversary uses the result of their TCP connection to determine the state of the target port. A successful connection indicates a port is open with a service listening on it while a failed connection indicates the port is not open. |
|
|
Solutions | Employ a robust network defense posture that includes an IDS/IPS system. |
Related Weaknesses |
CWE ID
|
Description
|
CWE-200 |
Exposure of Sensitive Information to an Unauthorized Actor |
|
Related CAPECS |
CAPEC ID
|
Description
|
CAPEC-300 |
An adversary uses a combination of techniques to determine the state of the ports on a remote target. Any service or application available for TCP or UDP networking will have a port open for communications over the network. Although common services have assigned port numbers, services and applications can run on arbitrary ports. Additionally, port scanning is complicated by the potential for any machine to have up to 65535 possible UDP or TCP services. The goal of port scanning is often broader than identifying open ports, but also give the adversary information concerning the firewall configuration. Depending upon the method of scanning that is used, the process can be stealthy or more obtrusive, the latter being more easily detectable due to the volume of packets involved, anomalous packet traits, or system logging. Typical port scanning activity involves sending probes to a range of ports and observing the responses. There are four port statuses that this type of attack aims to identify: open, closed, filtered, and unfiltered. For strategic purposes it is useful for an adversary to distinguish between an open port that is protected by a filter vs. a closed port that is not protected by a filter. Making these fine grained distinctions is requires certain scan types. Collecting this type of information tells the adversary which ports can be attacked directly, which must be attacked with filter evasion techniques like fragmentation, source port scans, and which ports are unprotected (i.e. not firewalled) but aren't hosting a network service. An adversary often combines various techniques in order to gain a more complete picture of the firewall filtering mechanisms in place for a host. |
|