Summary |
In this attack pattern, the adversary intercepts information transmitted between two third parties. The adversary must be able to observe, read, and/or hear the communication traffic, but not necessarily block the communication or change its content. Any transmission medium can theoretically be sniffed if the adversary can examine the contents between the sender and recipient. Sniffing Attacks are similar to Man-In-The-Middle attacks (CAPEC-94), but are entirely passive. MITM attacks are predominantly active and often alter the content of the communications themselves. |
Related CAPECS |
CAPEC ID
|
Description
|
CAPEC-117 |
An adversary monitors data streams to or from the target for information gathering purposes. This attack may be undertaken to solely gather sensitive information or to support a further attack against the target. This attack pattern can involve sniffing network traffic as well as other types of data streams (e.g. radio). The adversary can attempt to initiate the establishment of a data stream or passively observe the communications as they unfold. In all variants of this attack, the adversary is not the intended recipient of the data stream. In contrast to other means of gathering information (e.g., targeting data leaks), the adversary must actively position themself so as to observe explicit data channels (e.g. network traffic) and read the content. However, this attack differs from a Man-In-the-Middle (MITM) attack, as the adversary does not alter the content of the communications nor forward data to the intended recipient. |
CAPEC-652 |
An adversary obtains (i.e. steals or purchases) legitimate Kerberos credentials (e.g. Kerberos service account userID/password or Kerberos Tickets) with the goal of achieving authenticated access to additional systems, applications, or services within the domain. Kerberos is the default authentication method for Windows domains and is utilized for numerous authentication purposes. Attacks leveraging trusted Kerberos credentials can result in numerous consequences, depending on what Kerberos credential is stolen. For example, Kerberos service accounts are typically used to run services or scheduled tasks pertaining to authentication. However, these credentials are often weak and never expire, in addition to possessing local or domain administrator privileges. If an adversary is able to acquire these credentials, it could result in lateral movement within the Windows domain or access to any resources the service account is privileged to access, among other things. Kerberos credentials can be obtained by an adversary via methods such as system breaches, network sniffing attacks, and/or brute force attacks against the Kerberos service account or the hash of a service ticket. Ultimately, successful spoofing and impersonation of trusted Kerberos credentials can lead to an adversary breaking authentication, authorization, and audit controls with the target system or application. |
|